Joint Entrance Screening Test (JEST-2015)-X

1.	A bike stuntman rides inside a well of frictionless surface given by $z = a(x^2 + y^2)$, under the action of
	gravity acting in the negative z-direction. $\vec{g} = -g\hat{z}$. What speed should he maintain to be able to ride at
	a constant height z_0 without failing down?

- (a) $\sqrt{g z_0}$
- (b) $\sqrt{3gz_0}$
- (c) $\sqrt{2gz_0}$
- (d) The biker will not be able to maintain a constant height, irrespective of speed.
- 2. A chain of mass *M* and length *L* is suspended vertically with its lower end touching a weighing scale. The chain is released and falls freely onto the scale. Neglecting the size of the individual links, what is the reading of the scale when a length *x* of the chain has fallen?
 - (a) $\frac{Mgx}{L}$ (b) $\frac{2Mgx}{L}$ (c) $\frac{3Mgx}{L}$ (d) $\frac{4Mgx}{L}$
- 3. The distance of a star from the Earth is 4.25 light years, as measured from the Earth. A space ship travels from Earth to the star at a constant velocity in 4.25 years, according to the clock on the ship. The speed of the space ship in units of the speed of light is,
 - (a) $\frac{1}{2}$ (b) $\frac{1}{\sqrt{2}}$ (c) $\frac{2}{3}$ (d) $\frac{1}{\sqrt{3}}$
- 4. Consider a spin- $\frac{1}{2}$ particle characterized by the Hamiltonian $H = \omega S_z$. Under a perturbation $H' = gS_x$, the second order correction to the ground state energy is given by,
 - (a) $-\frac{g^2}{4\omega}$ (b) $\frac{g^2}{4\omega}$ (c) $-\frac{g^2}{2\omega}$ (d) $\frac{g^2}{2\omega}$
- 5. The Bernoulli polynomial $B_n(s)$ are defined by, $\frac{xe^{xs}}{e^x 1} = \sum B_n(s) \frac{x^n}{n!}$. Which one of the following rela-

(a) $\frac{xe^{x(1-s)}}{e^x-1} = \sum B_n(s) \frac{x^n}{(n+1)!}$

(b)
$$\frac{xe^{x(1-s)}}{e^x-1} = \sum B_n(s) (-1)^n \frac{x^n}{(n+1)!}$$

(c) $\frac{xe^{x(1-s)}}{e^x - 1} = \sum B_n(-s) (-1)^n \frac{x^n}{n!}$ (d) $\frac{xe^{x(1-s)}}{e^x - 1} = \sum B_n(s) (-1)^n \frac{x^n}{n!}$

- 6. What is the maximum number of extrema of the function $f(x) = P_k(x)e^{-\left(\frac{x^4}{4} + \frac{x^2}{2}\right)}$, where $x \in (-\infty, \infty)$ and $P_k(x)$ is an arbitrary polynomial of degree k?
 - (a) k + 2

tions is true?

- (b) k + 6
- (c) k + 3
- (d) *k*

		2		
7.	Given an analytic function $f(z) = \phi(x, y) + i\psi(x, y)$, where $\phi(x, y) = x^2 + 4x - y^2 + 2y$. If <i>C</i> is constant, which of the following relations is true?			
	(a) $\psi(x, y) = x^2y + 4y + C$	(b) $\psi(x, y) = 2xy - 2x + C$		
	(c) $\psi(x, y) = 2xy + 4y - 2x + C$	(d) $\psi(x, y) = x^2 y - 2x + C$		
8.	A particle of mass <i>m</i> is confined in a potential well given by $V(x) = 0$ for $-L/2 < x < L/2$ and $V(x) = \infty$			
	elsewhere. A perturbing potential $H'(x) = \alpha x$ has been applied to the system. Let the first and second			

- order corrections to the ground state be $E_0^{(1)}$ and $E_0^{(2)}$, respectively. Which one of the following statements is correct?
 - (a) $E_0^{(1)} < 0$ and $E_0^{(2)} > 0$ (b) $E_0^{(1)} = 0$ and $E_0^{(2)} > 0$ (d) $E_0^{(1)} = 0$ and $E_0^{(2)} < 0$ (c) $E_0^{(1)} > 0$ and $E_0^{(2)} < 0$
- Consider a harmonic oscillator in the state $|\psi\rangle = e^{-\frac{|\alpha|^2}{2}}e^{\alpha a^{\dagger}}|0\rangle$, where $|0\rangle$ is the ground state, a^{\dagger} is the raising 9. operator and α is a complex number. What is the probability that the harmonic oscillator is in the *n*-th eigenstate $|n\rangle$?
 - (a) $e^{-|\alpha|^2} \frac{|\alpha|^{2n}}{n!}$ (b) $e^{-\frac{|\alpha|^2}{2}} \frac{|\alpha|^n}{n!}$ (c) $e^{-|\alpha|^2} \frac{|\alpha|^n}{n!}$
- 10. A particle of mass m moves in 1-dimensional potential V(x), which vanishes at infinity. The exact ground state eigenfunction is $\psi(x) = A \operatorname{sech}(\lambda x)$ where A and λ are constant. The ground state energy eigenvalue of this system is,
 - (a) $E = \frac{\hbar^2 \lambda^2}{m}$ (b) $E = -\frac{\hbar^2 \lambda^2}{m}$ (c) $E = -\frac{\hbar^2 \lambda^2}{2m}$
- Given that ψ_1 and ψ_2 are eigenstates of a Hamiltonian with eigenvalues E_1 and E_2 respectively, what is 11.
 - the energy uncertainty in the state $(\psi_1 + \psi_2)$?

 (a) $-\sqrt{E_1 E_2}$ (b) $\frac{1}{2} |E_1 E_2|$ (c) $\frac{1}{2} |E_1 + E_2|$ (d) $\frac{1}{\sqrt{2}} |E_2 E_1|$
- 12. Consider two points charges q and λq located at the points, x = a and $x = \mu a$, respectively. Assuming that the sum of the two charges is constant, what is the value of λ for which the magnitude of the electrostatic force is maximum?
 - (c) $\frac{1}{u}$ (b) 1 (a) μ (d) $1 + \mu$
- If two ideal dice are rolled once, what is the probability of getting at least one '6'? 13.
 - (b) $\frac{1}{36}$ (c) $\frac{10}{36}$ (a) $\frac{11}{36}$ (d) $\frac{5}{36}$
- 14. An ideal gas is compressed adiabatically from an initial volume V to a final volume αV and a work W is done on the system in doing so. The final pressure of the gas will be $\left(\gamma = \frac{C_p}{C}\right)$,
 - (a) $\frac{W}{V^{\gamma}} \frac{1-\gamma}{\alpha-\alpha^{\gamma}}$ (b) $\frac{W}{V^{\gamma}} \frac{\gamma-1}{\alpha-\alpha^{\gamma}}$ (c) $\frac{W}{V} \frac{1-\gamma}{\alpha-\alpha^{\gamma}}$ (d) $\frac{W}{V} \frac{\gamma-1}{\alpha-\alpha^{\gamma}}$

		3
15. For a system in thermal equilibrium with a heat bath at temperature <i>T</i> , which one of the following equal correct ?		
	$\left(\beta = \frac{1}{k_B T}\right)$	
	(a) $\frac{\partial}{\partial \beta} \langle E \rangle = \langle E \rangle^2 - \langle E^2 \rangle$	(b) $\frac{\partial}{\partial \beta} \langle E \rangle = \langle E^2 \rangle - \langle E \rangle^2$

- (c) $\frac{\partial}{\partial \beta} \langle E \rangle = \langle E^2 \rangle + \langle E \rangle^2$ (d) $\frac{\partial}{\partial \beta} \langle E \rangle = -\left(\langle E^2 \rangle + \langle E \rangle^2\right)$ 16. A spherical shell of inner and outer radii a and b, respectively, is made of a dielectric material with frozen polarization $\vec{P}(r) = \frac{k}{r}\hat{r}$, where k is a constant and r is the distance from the its centre. The electric field in the region a < r < b is,
 - (a) $\vec{E} = \frac{k}{\varepsilon_0 r} \hat{r}$ (b) $\vec{E} = -\frac{k}{\varepsilon_0 r} \hat{r}$ (c) $\vec{E} = 0$ (d) $\vec{E} = \frac{k}{\varepsilon_0 r^2} \hat{r}$
- 17. The electrostatic potential due to a change distribution is given by $V(r) = A \frac{e^{-\lambda r}}{r}$, where A and λ are constants. The total charge enclosed within a sphere of radius $1/\lambda$, with its origin at r = 0 is given by,

 (a) $\frac{8\pi\varepsilon_0 A}{e}$ (b) $\frac{4\pi\varepsilon_0 A}{e}$ (c) $\frac{\pi\varepsilon_0 A}{e}$ (d) 0
- 18. A circular loop of radius R, carries a uniform line charge density λ . The electric field, calculated at a distance z directly above the center of the loop, is maximum if z is equal to,
 - (a) $\frac{R}{\sqrt{3}}$ (b) $\frac{R}{\sqrt{2}}$ (c) $\frac{R}{2}$
- 19. For non-interacting Fermions in *d*-dimensions, the density of states D(E) varies as $E^{(d/2-1)}$. The Fermi energy E_F of an N particle system in 3-, 2- and 1-dimensions will scale respectively as,
 - (a) N^2 , $N^{2/3}$, N (b) N, $N^{2/3}$, N^2 (c) N, N^2 , $N^{2/3}$ (d) $N^{2/3}$, N, N^2
- 20. A classical particle with total energy *E* moves under the influence of a potential $V(x, y) = 3x^3 + 2x^2y + 2xy^2 + y^3$. The average potential energy, calculated over a long time is equal to,
 - (a) $\frac{2E}{3}$ (b) $\frac{E}{3}$ (c) $\frac{E}{5}$
- 21. A particle in thermal equilibrium has only 3 possible states with energies $-\varepsilon$, 0, ε . If the system is maintained at a temperature $T \gg \frac{\varepsilon}{k_B}$, then the average energy of the particle can be approximated to,
 - (a) $\frac{2\varepsilon^2}{3k_BT}$ (b) $-\frac{2\varepsilon^2}{3k_BT}$ (c) $-\frac{\varepsilon^2}{k_BT}$
- 22. The energy difference between the 3p and 3s levels in Na is 2.1 eV. Spin-orbit coupling splits the 3p level, resulting in two emission lines differing by 6 Å. The splitting of the 3p level is approximately, (a) 2 eV (b) 0.2 eV (c) 0.02 eV (d) 2 meV
- 23. What is the voltage at the output of the following operational amplifier circuit [see figure 1]?

Figure 1

(a) 1 V

(b) 1 mV

(c) $1 \mu V$

(d) 1 nV

24. What is the area of the irreducible Brillouin zone of the crystal structure as given in the figure ? [see figure 2]

(a) $\frac{2\pi^2}{\sqrt{3}A^2}$

(b) $\frac{\sqrt{3\pi^2}}{2A^2}$

(c) $\frac{2\pi^2}{A^2}$

25. For a 2-dimensional honeycomb lattice as shown in the figure 3, the first Bragg spot occurrs for the grazing angle θ_1 , while sweeping the angle from 0° . The next Bragg spot is obtained at θ_2 given by,

Figure 3

(a) $\sin^{-1}(3\sin\theta_1)$

(b) $\sin^{-1}\left(\frac{3}{2}\sin\theta_1\right)$

(c) $\sin^{-1} \left(\frac{\sqrt{3}}{2} \sin \theta_1 \right)$ (d) $\sin^{-1} \left(\sqrt{3} \sin \theta_1 \right)$

PART-B: 1 MARK QUESTIONS

A spring of force constant k is stretched by x. It takes twice as much work to stretch a second spring by

(b) Increases by a factor of 2

(d) Decreases by a factor of 2

How is your weight affected if the Earth suddenly doubles in radius, mass remaining the same?

26.

27.

(a) Increases by a factor of 4

(c) Decreases by a factor of 4

	$\frac{x}{2}$. The force constant of the second spring is,				
	(a) k	(b) 2 <i>k</i>	(c) 4 <i>k</i>	(d) 8k	
28.	The Lagrangian of a J	particle is given by L	$=\dot{q}^2-q\dot{q}$. Which of	the following statements is true?	
	 (a) This is a free particle (b) The particle is experiencing velocity dependent damping (c) The particle is executing simple harmonic motion (d) The particle is under constant acceleration 				
29.	A charged particle is	released at time $t = 0$,	from the origin in th	e presence of uniform static electric and	
		by $\mathbf{E} = E_0 \hat{y}$ and $\mathbf{B} =$	$B_0\hat{z}$, respectively. W	Thich of the following statements is true	
	for $t > 0$?				
	(a) The particle move(c) The particle move	_		noves in a circular orbit noves in the (y, z) plane	
	•		(d) The particle in	ioves in the (3, 2) plane	
30.	The sum $\sum_{M=1}^{99} \frac{1}{\sqrt{m+1}}$	\sqrt{m} is equal to			
	'				
	(a) 9	(b) $\sqrt{99} - 1$	$(c) \frac{1}{\left(\sqrt{99} - 1\right)}$	(d) 11	
31.	Which of the following	ng expressions represe	ents an electric field	due to a time varying magnetic field?	
	(a) $K(x\hat{x} + y\hat{y} + z\hat{z})$		(b) $K(x\hat{x} + y\hat{y} -$	$z\hat{z}$)	
32.	the incident field. For	_	ictivity, which of the	the metal and the angular frequency ω of following relations is correct? (Assume	
	(a) $d \propto \sqrt{\sigma/\omega}$	(b) $d \propto \sqrt{1/\sigma\omega}$	(c) $d \propto \sqrt{\sigma \omega}$	(d) $d \propto \sqrt{\omega/\sigma}$	
33.	Consider the differential equation $G'(x) + kG(x) = \delta(x)$; where k is a constant. Which of the following statements is true? (a) Both $G(x)$ and $G'(x)$ are continuous at $x = 0$ (b) $G(x)$ is continuous at $x = 0$ but $G'(x)$ is not (c) $G(x)$ is discontinuous at $x = 0$ (d) The continuity properties of $G(x)$ and $G'(x)$ at $x = 0$ depends on the value of k				
34.	A particle moving un	nder the influence of	a potential $V(r) = k$	$r^2/2$ has a wavefunction $\psi(r,t)$. If the	
	wavefunction changes to $\psi(\alpha r, t)$, the ratio of the average final kinetic energy to the initial kinetic energy will be,				
	(a) $\frac{1}{\alpha^2}$	(b) α	(c) $\frac{1}{\alpha}$	(d) α^2	

H.O.: 28-A/11, Jia Sarai, Near-IIT, New Delhi-16, Ph : 011-26851008, 26861009 www.careerendeavour.com

B.O.: 35, First Floor, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 9540292991

35.	If a Hamiltonian H is	s given as $H = 0\rangle\langle 0 $ –	$ 1\rangle\langle 1 + i(0\rangle\langle 1 - 1\rangle\langle 0 $	$ $), where $ 0 \rangle$ and $ 1 \rangle$ are orthonormal		
	states, the eigenvalues of H are					
	(a) ± 1	(b) $\pm i$	(c) $\pm \sqrt{2}$	(d) $\pm i\sqrt{2}$		
36.	Electrons of mass m in a thin, long wire at a temperature T follow a one-dimensional Maxwellian velocity distribution. The most probable speed of these electrons is,					
	(a) $\sqrt{\left(\frac{kT}{2\pi m}\right)}$	(b) $\sqrt{\left(\frac{2kT}{m}\right)}$	(c) 0	(d) $\sqrt{\left(\frac{8kT}{\pi m}\right)}$		
37.		The blackbody at a temperature of 6000 K emits a radiation whose intensity spectrum peaks at 600 nm. If the temperature is reduced to 300 K, the spectrum will peak at,				
	(a) 120 μ m	(b) $12 \mu \text{m}$	(c) 12 mm	(d) 120 mm		
38.	Let λ be the wavelength of incident light. The diffraction pattern of a circular aperture of dimension r_0 will transform from Fresnel to Fraunhofer regime if the screen distance z is,					
	(a) $z \gg r_0^2/\lambda$	(b) $z \gg \lambda^2/r_0$	(c) $z \ll \lambda^2/r_0$	(d) $z \ll r_0^2/\lambda$		
39.	mW at normal incide	ence is		y an incident laser beam of power 10		
	(a) 10^{-13} N	. ,	(c) 10^{-9} N	(d) 10^{-15} N		
40.	The wavelength of r has a refractive inde		n air is 6328 A. What	happens to its frequency in glass that		
	(a) Increases by a factor (c) Remains the same	ctor of 3	(b) Decreases by a fa			
41.	The reaction $e^+ + e^-$	$\rightarrow \gamma$ is forbidden because	ause,			
	(a) lepton number is (c) angular momentu	not conserved	(b) linear momentum (d) charge is not con			
42.	In Millikan's oil drop experiment the electronic charge e could be written as $\kappa \eta^{1.5}$, where κ is a function of all experimental parameters with negligible error. If the viscosity of air η is taken to be 0.4% lower than the actual value, what would be the error in the calculated in the calculated value of e ? (a) 1.5% (b) 0.7% (c) 0.6% (d) 0.4%					
43.	The stable nucleus th	hat has $\frac{1}{3}$ the radius of	¹⁸⁹ Os nucleus is,			
	(a) ⁷ Li	(b) ¹⁶ O	(c) ⁴ He	$(d)^{14}N$		
44.		ng excited states of a hy	ydrogen atom has the h (c) 3s	ighest lifetime ? (d) 3p		
45.	(a) $2p$ Which of the following	` '	* *	rms of the carbon atom in the ground		
	state electronic configuration $1s^2 2s^2 2p^2$?					
	(a) ${}^{3}P < {}^{1}D < {}^{1}S$	(b) ${}^{3}P < {}^{1}S < {}^{1}D$	(c) ${}^{3}P < {}^{1}F < {}^{1}S$	(d) ${}^{3}P < {}^{1}F < {}^{1}D$		

Figure 4

(a) 1, 0, 1

(b) 0, 0, 1

(c) 1, 1, 1

(d) 0, 1, 1

47. The reference voltage of an analog to digital converter is 1 V. The smallest voltage step that the converter can record using a 12-bit converter is,

(a) 0.24 V

(b) $0.24 \,\mathrm{mV}$

(c) $0.24 \,\mu\text{V}$

(d) $0.24 \, \text{nV}$

The total number of Na⁺ and Cl⁻ ions per unit cell of NaCl is, 48.

(b) 4

(c) 6

(d) 8

49. The entropy temperature diagram of two Carnot engines, A and B, are shown in the figure 5. The efficiencies of the engines are η_{A} and η_{B} , respectively. Which one of the following equalities is correct?

Figure 5

(a) $\eta_A = \eta_B/2$

(b) $\eta_A = \eta_B$

(c) $\eta_A = 3\eta_B$

(d) $\eta_A = 2\eta_B$

Given that tight binding dispersion relation $E(k) = E_0 + A \sin^2\left(\frac{ka}{2}\right)$, where E_0 and A are constants and 50. a is the lattice parameter. What is the group velocity of an electron at the second Brillouin zone boundary?

(a) 0

(b) $\frac{a}{h}$ (c) $\frac{2a}{h}$ (d) $\frac{a}{2h}$